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KINETIC APPROACH TO SOLITON TURBULENCE

C. M, Tchen

City College of the City University of New York, New York, N.Y.10031

ABSTRACT

The forced Schrodinger equation for strong fluctuations describes
the micro-hydrodymical state of soliton turbulence. It is valid for large-
scale turbulence where the internal waves can interact with the velocity
fluctuations. It was derived by Tchen, as a fluid analogue, from the
Navier-stokes equations for compressible flows. It is transformed into
a master equation, to be subsequently decomposed into a macro-group,

a micro-group, and a submicro-group, representative of the three trans-
port processes of spectral evolution, transport property, and relaxation.
The loss of memory in formulating the relaxation function gives the
closure so that the transport property can attain its equilibrium. The
kinetic equation for the macro-distribution is returned to the continuum

by the method of moments to derive the equation of spectral evolution.

The spectral flow is governed by the three transport functions as follows.

transfer function from  the (cubic) modulational nonlinearity forms
¢ direct cascade. 2) A transfer function from the driving force,

which enters as a convective nonlinearity in the phase-space, produces

1-1

1)A



a reverse cascade for accumulating the solitons toward the large-scale
end of the spectrum. 3) A coupling function represents the excitation
of the solitons by the driving force which acts as a scattering (or

emission) from velocity fluctuations.
The following power laws
Elm k™, N o~ K
are found for the soliton field intensity and density, respectively,

with

3
"
N
3
"
=~

in the coupling subrange at larger wavenumbers. These analytical
predictions are verified by experiments. The forced Schrodinger equation

is valid for fluids and plasmas.



1. Introduction: The Forced Schradinger Equation for the Description

of Soliton Turbulence

The multi-scale motions in fluids and plasmas are more adequately

described by the nonlinear Schrodinger equationi
. 2 .1 e~
(3t-lvnv +'Z"‘)nAN)E =0 , (1)

instead of the usual Navier-Stokes equation. The modulation relation

(2)

makes the Schrodinger equation cubically nonlinear. Here E_ is the
longitudinal field and is related to the density fluctuation N by (2).
The density is normalized such that

N = 1. (3)

The over-bar denotes an ensemble average, () denotes a fluctuation,

and A is the operator. the constants are

Vo o Sy s A

n 4 d

having the dimensions of viscosity, frequency, and (acceleration)-z,

respectively.



The representation of the many-scale motions by the Schrdédinger
equation is well recognized in plasmas, because of the presence of the
ion and electron species, and therefore the Schrdadinger equation was
first derived for plasmas. The analogous representation for fluids, called
the fluid analogue, is not evident. In fluids of large-scale motions
where the compressibility is not negligible, the longitudinal density
waves may couple with the transverse velocity fluctuations. The internal
gravity waves of large scales may also couple with the velocity fluctuations
and transmit the effects to smaller-scale turbulence. These fluid motions
of many scales justify the fluid analogue of the Schroédinger equation
and its derivation from the Navier-Stokes equation for compressible
fluids. The reason for having a fluid analogue lies in the fact that
the Navier-Stokes equation is formally tied down to small scales by
the nonlinearity g Vg of the gradient type, where g is the fluid
velocity . The Schrodinger equation has the cubic nonlinearity

rE'l 2 E not of the gradient type, and is fourd more suitable

for the description of large scales.

An examination of (1) reveals that the modulational nonlinearity
yields a direct cascade, and should require a sink for balancing the
spectral flow.An artificial sink would introduce an ambiguity. Hence
the Schrodinger equation in the original form (1) cannot describe turbulence.
The reason for this difficulty lies in that the original derivation was
intended for weak fluctuations. The fluid analogue for strong turbulence
requires a new derivation

We have derived a generalized Schrddinger equation in the form

1-4



as follows:
. 2 . N N o - -.M
(bt i Y,V +¢,%th NJE =-iX , (4)
with a driving force ;( . that obeys the Poisson equation

~
=-lw r

2 n

v , ()

PR

and contains the scattering (or emission) 3

F o= AVY: Gu . (6)

by the velocity fluctuation U . The equation (%) will be called the

"forced Schrddinger equation". We consider isotropy by assuming

E=0, X=0 . (7)

In conclusion, the forced schrodinger equation, but not the standard
Schrédinger equation and the Zakharov equations, will  develop

turbulence.



2. Master Equation for Solitons

For the evolution of the spectral distribution of field fluctuations,
the knowledge of the eddy transport properties is necessary, for which
a kinetic theory is most appropriate, like in any transport theories
of gases and plasnas. A continuum theory of correlations, as based
upon the forced Schrodinger equation, would immediately be faced with
the difficulty of high-order correlations. The most well known kinetic
method for treating collective phenomena is the statistial method of many
bodies by Bogoliubov. It introduces a master equation of N particles
that interact with a field , and by successive intergrations,
generates a hierarchy of equations for the many-particle distribution
functions, called the BBGKY hierarchy. For the spectralsevolution,
the closure that leads to the kinetic equation for the pair-distribution
is necessary. This is considered to be a difficult task in statistical
mechanics. |n addition, the field of interaction %(t,)_() that is a simple
Coulomb field in plasmas becomes much more complicate in solitons,
as having to satisfy the nonlinear partial differential equation (4) in
view of its self-consistency. We also wish to avoid the difficulty from
the kinetic equation of pair-distribution function.

For these reasons, we devise a group-kinetic method. The
forced Schrédinger equation (4) can be considered as the first moment

of the following master equation

(2, + A UF(tx,E) = 0 . (8)

The differential operator

1-6



?_=L+“l'_ +Lx (9)

consists of three conponents

L, ==iv 97 Ly=ite N, Ly=iX-3, 2 =>le . (10)

The function
tt,x,E) =9 [E - E(t,x)] (11)

in the phase space has E as an independent variable. The zeroth

-

moment gives

fdg? = 1,fd5'f' = 1,/dE"f' =0, (12a)

-

and the first moment gives

/dEE?:E, E:/dEEF,'é:deEf : (12b)
The master equation in the form (8) describes the microdynamical
state of turbulence. This can be shown by reverting it into the forced
Schrodinger equation through the moment operation.
Since the field anplitude E is complex, the distribution function

f(t,xlE) will be complex too, while the functions N and i are real.

- .



3. Kinetic Equation of Soliton Turbulence

For soliton turbulence, we need to derive a kinetic equation
that explicitly shows the interaction between the large and small scales.
Since both the forced Schrodinger equation and the master equation
(8) as a kinetic correspondent describe the microdynamical state of
soliton turbulence in too many details that are unnecessary for a statistical
treatment, a procedure of coarse-graining is needed. The decomposition
into Fourier components will not suffice. In compliance with the separate
statistical roles, we decompose the fluctuation

A

O = 07+ (13a)

o
into a macro-group () and a micro-group ()', and by re-scaling
the micro-group
SN

g + v (13b)

into a submacro-group ()1 and a submicro-group ()" . The three

groups with operators
A, A, A" (14)

represent the three transport processes of spectral evolution, transport
property, and relaxation. The loss of memory in the relaxation makes
the transport coefficients approach their equilibrium, and yields the

closure. The three groups are separated by the three durations of

1-8



correlations
[-] ] (15)
c 2 T > T¢ .

The superscripts

1 £ n]
oL ot o (16)

with square brackets denote the deterministic statistical properties
as derived from the fluctuations (13) and from ensemble averages.

-]
We scale the master equation by the operators A and A] to

P

obtain the system of equations

(3. + A°L -pMe = L°F (17)
t Gt =
and
A f”] -
(¥, +A'L-G M = L(F ). (18)
The eddy collisions are:

- A’ LTf! (19a)

\C’(ﬂ ¢°

C["] f]

- A] L fr (19b)



The submicro-distribution
o= 72 L f(3) (20)

is a cluster of high-order groups that represents the frictional environment
{n]

in which f' evolves. The collision coefficients ‘C_,,Il] and {, may

act as integral operators.

The composition of f,m is determined by (18). Upon integrating,

we have the distribution function

-t

R/

-0

dr Al e-TIL =Ty (), (21a)

from which we calculate the eddy collision

t
AL = AT 1 1 1 s o
dT L (1) A (t,t-T) L (t=-T)(f+f ) (21b)
o =T
Since the groups
1 (-]
A and A
have the time scales
(1 - (1
Tc and c ,

by (15), we can replace the upper limit t of integration

1-10



by o without loss of generality, and obtain an asymptotic collision

coefficient

tro
Cm =f dT <L’(t) At t-T) LT ) (22a)
0

that is deterministic. Mere we have written
1
L'(t) = L (t,x,E)

for the sake of siyplicity, and /\1 is the operator of evolution. In

an analogous manner, we define

c’] f‘?N 1
G = /dr(L'(t) AL t=T) L'(t-T) ) . (22b)
o}
By noting
AT = - AW L@,

we can show the equivalence between (22a) and (22b), and write

(1]

G - Cm i (23)
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With the collision coefficient thus deterMmined in the form (22b),

the equation of evolution of the macro-distribution (17) becomes

b 3fo

(5t+ AT =-L"F + 8 (2)

Q
It is explicit in f , and is called the kinetic equation of turbulence.

4. Schroédinger Equation of Soliton Turbulence

By taking the moment of the kinetic equation (24), we revert
to the continuum and derive the following Schrdodinger equation of

soliton turbulence:

Q
(2, -iv_ V° + ity A NIYE® = - ix° +J°, (25)

with

s° =[dE A (26a)

]

or equivalently

(1
)° =/dE IR (26b)

by (23). It has all the constituents of the original forced Schrédinger

1-12



equation (4), and, in addition, the eddy stress (26). The latter
represents the statistical effects of the colliding micro-eddies.

By writing

QG] =E&GP+CXBI, (27)

into two components as corresponding to LN' and LX' , we transform

the eddy stress (26b) into two parts as follows:

J = J + J , (28a)

with

Q

(1 o 0 (10
Iy -f%s%f , Iy = [HEECG, f . (28b)
The limits of integration are understood to extend from -%to ©@ ,

The coefficients of collision are integral operators, and the operator

symbol {} is understood.

5. Spectral Flow

O%
Upon multiplying (25) by E and adding the complex conjugate

part, we obtain the energy equation for the solitons, as follows:
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‘szt <'Eof 2>= WM - Tm

I

X N (29)

Homogeneity and isotropy are assumed.
The transport functions are written in the order of their importance
with increasing wavenumbers.

The coupling function
o o 0%k Q o]
W =.i.[-.()£-§ >+.()£ E>] (30)
excites the solitons by the driving force. The transfer function

TXCOJ - '<,JX°- Eo*,> (313)

-

for the reverse cascade accumulates the solitons toward the large-scale

end of the spectrum, and the transfer function

TN [‘01 = “<l :'.No. Eo*l> (31b)

for the direct cascade causes a disintegration of the large eddies
into smaller eddies. The vertical bars represent the absolute values.

The remaining convective terms

3 1-14



-] [+ ]
(-iv ¥5 + ity A"NOIE (32)

in the left hand side of (25) do not contribute to the spectrai flow,

on account of their imaginary character.

6. Theory of Eddy Transport

6.1. Eddy diffusivities

It will be convenient to introduce the following eddy diffusivity

operators

(t]1_ ,tooe
Ky o = /0- dr<N'(t) Alet,t-7) Nl(t-T )y (33a)
< U0 = [T i A T ) x e
Kx =) dT(X'(t JA (14T ) X (+-T ) >, (330)

with the evolution operator
Al = AA (34)

for transforming the collision coefficients into

Z’aNC"(z _/.L.Q )2 Ktl]

\Z “n N {35a)

(1 (1
\C/K = - B.Kx «d ’

-— e
o

(35b)
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and the transfer functions into

o]
TNC ] -jdE E.LaNﬁ]<(Eo*fo]>
= (._lz_wn)z de E-Ky, ft]<lEo*fo‘> (362)
Tx[d: _ J’dE E.Cxtﬂdgo*fol>
, £1 9% ©
= fd‘EEé‘x'?KfE r‘{>- (36b)

-

Use is made of (28), (31) and (35). The approximation retains those
components of diffusivity (33) originating from the auto~correlations,
and neglects others from cross-correlations.

The diffusivities upon which the transfer functions depend
are the T-integrations of the Lagrangian correlations, the orbit being
characterized by the fluctuating evolution operator /\] . For the sake
of simplicity and as part of our attempt of memory loss, we approximate
the operator by its average

/

and write the diffusivities (33) in the Fourier form, as follows
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Ky & = jay’x(n-n:") N'(-k")) 0]
- (t]Z { [u]} (37a)
Q! .
KX = .;—fd§$1<il(bll),ZE'(_;:u)>T’E 1
_ [1]2 [n'] ] )
=+ X {‘L‘k } (37b)
Here
Xz

is the coefficient of Fourier truncation in three dimensions within a

length interval 2M which may be as large as desired, and

Nk['] 2 /d&"k <N'(§") Nl(_&ll)> (38a)

xk['] 2 /dE“ ; <)§t“:n).)f|(_5n)> (38b)

are the spectral intensities of N- and X- fluctuations, such that

m )

= (W, xL (%D

The intensities (38) serve as operators.

1-17



The submicro-time
] tyo0  Iu]
'Ck = / dtr h (T) (39)
0

is the relaxation time for the approach of the diffusivities (37) to
equilibrium. The same relaxation holds for both diffusivities, since

they share the identical operator of evolution /\’ - The orbit function

is
nl Tl u)
T NI R NHLIR et
~ (o)
_ % hg(T) by () (40)
with the components:
he(T) = exp(- £ik"- E T9) (41a)
i “]
hi(T) = exp ENC . (41b)

The first component relates to a streaming by E in weak turbulence,

(]
and the second component relates to an internal modulation by zz <0

in strong turbulence. The third component
[“7 [n]

= ex T
hye '(T) p Cx

is omitted in view of its external and divergent character.

1-18



The orbit function is the result of integrqtion of the equation

(18) for f1 by the use of the evolution operqtor /\1 that entails

1
&

From the characteric equations of the partial differential master
equation, one can determine the exact orbit with more orbital components
than those listed in (41a) and (41b). We have selected the major ones
that represent streaming and modulation only. With the assumption

of similarity between

[ u] 1]
CN and ?,‘h ’ (42)

a loop is formed, causing a loss of memory and yielding a closure.
Upon substituting (40) into (39), and subsequently into (37),

(35) and (36), we transfomn the diffusivities into

tha] - Nkmz {'o/tagt he( ©) hN["](T)} (43a)
, t2 0

KC] =L X E]Z / detT h(T)h[](T) , (43b)

X T3 0

and the transfer functions into

: taoo [03
( ) “2{4 dt 9, (T) (44a)
[°] : too X
Ty =~ -é- Xk[]z {(JL"E/ dt ek[ ]('c )} . (44b)
¥ %
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where

M(-.:) <!E°*f°l> (tc)

6, () s/dg E-he(T) hy
is the modified energy, as obtained by weichting the field energy
Q% O ok O
I.dE E-/[E f )>: E E >

by the orbit function.

By noting that
2 - K" 2 4
9%hglT) =- —T netr) (45a)
u

,

and by partial integration, we can write

3 -hto) n ) d - ket he (T ) hN("](v:) (45b)
- - 4
and
tvew
jdl‘ oz n Ty = -'-‘f/t-):rr“ he (< ) ().
o h 4 Yo

{45¢c)

The approximation of keeping the highest moment in T has been used

in (44a) and (u4ub).
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The change of signs in the two transfer functions (44a) and

° o
(44b) indicates that TN( ]is o direct cascade and that TXE ! is

a reverse cascade.

6.2. Fluidization as a means of closure

We recall that the decomposition into the three groups with

operators
o
A , Al , Al
corresponds to a decompasition into three transport processes of evolution,
diffusivity, and relaxation. Firstly, the macro-scaling yields the spectral

o]
evolution (29) with its coupling function W[ and the transfer functions

Tx(d . TNW-1 . By definition (30), the coupling function governs
the spectral flow between the two macro-groups 50 and go . By
definitions (31a), the transfer function TX (o1 governs the spectral
flow from )5' into Eo through the intemediary of the collision
coefficient CX['J. Similarly by definition (31b), the transfer function
TNCQ] governs the spectral flow from g_o into N' through the
intermediary of the collision coefficient EN(‘] . Secbndly, the collision
coefficients are proportional to the diffusivities Kxc'] and Krg.]
by (35). Thirdly, the approach to equilibrium and hence the closure
depend on the time of relaxation 7;{“], which enters into the diffusivities
by (37). We have determined the relaxation by analyzing the orbit
function in two components hE(‘t’) hN("](T) from (40) and (41).
They control the equilibrium of the diffusivities (43) and the trzr sfer

fuinctions {(44).
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In strong turbulence the streaming by E is negligible, giving
he(T) = 1. (46a)

The cluster of distribution functions (20) which shapes the frictional
property of the medium in which f! evolves is now assumed to act

like a fluid with a collision coefficient

(ll] c“] ’
Cye (b =Gy Mexm | (u6b)

-

This means that the collision coefficient E ["zt,x,E) in the kinetic
representation with its individuality in E 25 an independent variable
will be reduced into a collision coefficient th "(t’i) in the fluid
representation by losing the individuality in E . In this way, tfu]
ceases to be an operator. Hence the "fluidization” of the cluster N

of distributions yields the closure.

6.3. Calculation of the collision coefficients, the diffusivities, and

the transfer functions

With the approximation of strong turbulence (46a) and the hypothesis

of fluidization of the cluster (46b}, we reduce (41b) and {44c) into

[v]
hy = exp C 't (47)
Nf

and
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[l

Oy

(Tt) = hE('C)

th“J(r) ([5"! 2> .

At the same time we calculate the moments in T

(o]

fo dr

@ 4
f dT t hglT) hy
0

C ")

he(T) hy (T) = [Cm]"

Cu]

Nf

() = Cy 15?["] -

Nf

with Cy = 4! , to transform (42), (35) and {44) into

and

KND] = Nf] 2{ qu["]]-ly

th'] =-31-xi' Jz“ th-vzl_,} ’

CNE] =-(34, )2 n 1% c fq‘q

R Y
TN[f°1= - Ni'] :lz
Txbf]= ) C;(f('] EE:? 2

respectively.

The subscript

( )¢ denotes a fluidized property.
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By writing the spectral intensity in terms of the integral of

the spectral density, we have

("12 ®
Nk = 2[ dk" FN(k")
k
(53)
(]2 0
- n i}
Xk - 4/ dk Fx(k ) ”
k
where FN(k") and Fx(k") are spectral densities of the ﬁ- and
i- fluctuations.
By the use of the notation (53), we can rewrite (5la) in the
form of the following integral equation
i °° (1
C’ (k) = -(J-a)) 2f dk" Fy (k") C (k")‘ (54)
k

for the determination of the collision coefficient C’ 2 . Here we have
assumed that 1 and C (2 have the same spectral structure

Nf Nf
except for the difference of argumants k and k" - The integral

equation is solved to give

= W N

gl bl (s3)

With this solution we calculate all the expressions in (50) and

(51) to obtain:
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_ 5 ['l2(rt, ["1-5

z:xf ‘jcx ((}-; cdn) Xy : {%—- Nk[ } , (55b)
|—..Ll4)-‘ [l]z ["]-1

Ky = : 1‘)Nk {Nk } (56a)
1 -1 [ M

Ky =.§.<;L€wﬂ_)xk[ ]2{ Nk( ]"\S . (56b)

6.4. Coupling process

- ]
The coupling function W[], as defined by (30), couples the
[+] o
two macro-fluctuations E and X . lts determination requires a
- iy

fluid equation of macro-evolution in the form

. 2 . o o ° _ . °
(V- iv, V2 +it A N -C’Nf)E ==X (57)

as obtained by (25) under the hypothesis of fluidization and by using

the asymptotic value of the collision coefficient at large scales.
Upon integrating (57), we get the macro-field
o 00

E =-i jdr /\o(t,t-'t) xo(t-T) .

E (58 3a)
0

and calculate the coupling function
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to@ o
wm = / m<x°(t)-A(t,t-'c) x°(t—‘5)>
0 = -

(o]
3Ky . (58b)

ol
Here Kx[ is the trace of the diffusivity tensor, and

N r Al (59)

is the evolution operator. An approximate estimate is given in the

following. In the Fourier form, (58b) is

Q o t
wlel xk[32{/ dThN(‘C)}. (60)

0

In the fluid approximation, we have

hye= expCys T (61)

and obtain

w [ ;le,, x 12 (62)
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7- Spectral Structure

7.1. Equation of spectral balance

(o]

We have obtained above the transfer function TX for the

(11
reverse cascade (52b) with the coefficient of collision C;(f by (51b},
(o]

the coupling function W by (62), and finally the transfer function
T'\on for the direct cascade (52a), with the coefficient QE
(55a) .
The three transport functions govern the spectral balance, as

follows:

éE = - TX + W - TN
- C;f[ k[°h + l‘?Nfl [°72 C ['7 . (63)

The function
=.Lb< ° 2>
gE 2 t ‘.E.l

represents the instability of solitons.

The inertia subrange by reverse cascade is governed by

_e [T g2 .
£ = Cys E;\I - (64)
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The coupling subrange at larger wavenumbers is governed by

the spectral balance in the form:

= 0 , (65a)

or

\\C K xk(o I 'I?’T\lf ‘Ek[o-lz =0 . (65b)

The asymptciic value of the collision coefficient is used in the present
subrange of larger wavenumbers. The amount of energy Wrﬂ that
is produced by emission flows into the direct cascade TNEQ.1
Formally, a constani TNt °] would predict a secondary inertia
subrange by direct cascade, if a constant dissipation could be found.
Even so, the spectral cutoff by ngn can occur before the direct cascade can

be established.

7.2. Spectral laws

We take the spectral law

(°]12 w6
X = Wy k

-2 (66)

for the driving force, where ‘dx is the frequency scale . This
spectrum is valid for a driving force that serves as a production of
internal density waves in compressible turbulence.3

The spectral structure in the inertia subrange by reverse

cascade is governed by the spectral balance (64), under the conditions
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(2) and (66). We find the spectral laws

2 _ . -1, 6, =5 y-5.1/4

_ -1 6 -5 4 =1,1/2 -
N & omenlEg g 9 TATD)TT L ey g2 (g
representing a flat maximum in the spectral plot.

The spectral structure in the coupling subrange is governed

by the spectral balance (65b)}. By again using (2) and (66), we find

the spectral laws:

2 _ 2 6 ,-2
E = (C’Nfi’ w ® ok (68a)
N =0 B[P Tt (680)
N I ~
Here NF = Nf | k=g IS @n internal parameter defined by (55a).

The spectral laws of intensities have their group notations omitted.

8. Conclusions

Although the equivalence between the Schrddinger equation and

the Navier-Stokes equations has been established, 2 *°8

their nonlinear-
lity differs. The former is cubically nonlinear and the latter has a
nonlinearity of the gradient type. The Schrdédinger equation is thus

more suitable for the description of large-scale motions than do the

Navier-Stokes equations.
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The nonlineqr Schrodinger equation and the more general
Zakharov equations were originally derived for weak fluctuations in
plasmas.l Their derivations neglected the scattering (emission) by
velocity fluctuations. By generalizing to include finite fluctuations,
we found the forced Schrodinger equation.2

By the reverse cascade, the field energy is accumulated toward
the large-scale end of the spectrum. The inertia subrange is folloyad
by the coupling subrange, where the energy that is built up by emission
is cascaded down toward the smaller eddies in a direct cascade.

Consequently, the spectral intensity of field fluctuations falls with

the power law k-2 ., and the spectral intensity of density fluctuations

-

falls with the power law k-l‘l .

The role of i\)n is to cause a spectral cutoff of these power
laws. The prediction of the power laws for the density intensity has
been measured and is verified by Truc in the plasma experiments.7
See Fig. 1. The plot uses the spectral density FN(k) that is related
to the spectral intensity by

o

1] 2
NIE] = 2 [ dk” F(k") . (69)
k

The absence of the driving force from strorng fluctuations
will miss the mechanisms of accumulation and coupling. The transer
by direct cascade is the only mechanism which survives. On its own
it cannot initiate a spectral flow and a spectral balance. This explains
why it is so difficult for the standard Schrddinger equation to yieid

a spectrum. 8
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FLUID ANALOGUE OF THE SOLITON FORMALISM

C.M. TCHEN

City College of the City University of New York, New York, N.Y. 10031

ABSTRACT

In view of the many applications to turbulent phenomena in fluids,
plasmas, optics, astrophysics and nerve systems, a large effort has been given
to investigate the solitons analytically and numerically. The results
of analysis by means of the Z-S equations (the nonlinear Zakharov equations
and the Schrodinger equation) have not been encouraging, and have
concluded that the solitons could not become turbulent and establish a
broadened spectrum. An examination of the mathematical foundation of
these nonlinear equations reveals that they were indeed intended for
weak fluctuations and not for turbulence. By a nonlinear analysis that
carries all the nonlinear fluctuations including those from velocities,
we develop a general soliton formalism that emphasizes the dynamics
of the two-scale motions for a parallel development of turbulence in fluids
and plasmas. From the Navier-Stokes equations for plasmas and compressible
fluids of two scales (fast and slow waves), we derive two equations of
propagation of density waves. The fast wave is related to the fast field
by the property of the spontaneous creation of the field by rarefaction,

and the slow density wave is related to the field intensity by the property
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of the ponderomotive force. These two properties, which have been taken
for granted in plasmas in the Z-S equations, are not evident in fluids.

We demonstrate them by a Lagrangien formalism and a kinetic method

as consistent with the Navier-Stokes dynamics. The first of the two properties
transforms the hyperbolic equation of propagation of the fast density

wave into a parabolic equation of evolution for the field-envelope as driven
by the sound emission from finite velocity fluctuations. The second property
gives the modulation. The emission and the modulation produce two
nonlinearities. Our soliton system takes the generalized form of the Z-S
equations by including the sound emission. It can be degenerated into

the original Z-S equations by the omission of the sound emission in the
weak fluctuation approximation. In our general formalism the solitons

can be unstable and become turbulent, as occurring in the atmosphere.
There, the measurments have shown that the solitons play a particularly
important role in large scales, because the Navier-Stokes equations which

are nonlinear in the form a gradient are not suitable.

2-2



1. Introduction

There has been a great interest recently in the modulational
instability and turbulence of solitons, as described by the Schrédinger

- 1
equation

~- (1)

with

(2)

where Ea is the envelope of the field fluctuations, N is a density

oy
-~

fluctuation, A is an operator of fluctuation, and
’)m, ‘ C‘)n +  and /\

are constant quantities having the dimensions =f viscosity, frequency and

(acceleration) -2,

The parabolic equation with cubic nonlinearity (1) has applications
to a broad range of problems in nonlinear phenomena as connected

with nonlinear optics, plasma, nerve systems, internal gravity waves,
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water waves and fluid dynamics. It has been proposed already in 1944

by Leontovich 2 for analysing the nonlinear propagation of light and

radio waves. The soliton description has become one of the ster.dard method
for treating nonlinear waves in multi-scale systems, where the fast waves
are modulated nonlinearly by slow waves. its importance to instability

of plasmas and to various problems of solid state has been demonstated

by the large amount of analytical and numerical works in the current
literature, Its relevance to gravity wave and water waves 3'”, as well

as to electronic excitations in long helical molecules > has also been
demonstrated.

The soliton description has been shown to be valid in a wide
variety of other applications in fluids .rotating flows, acoustic turbulence,
the dynamics of liquid sheets, thermal convective instability, Rayleigh
instability, and instability of Poiseuille flow. In the atmosphere, many
of these instabilities will develop turbulence.

The importance of the cubic nonlinearity to fluid dynamical
turbulence has been pointed out already in 1944 by Landau 6, and the
cubic parabolic equation in the real form has been proposed by Stewartson
and Stuart 7.

The equivalence between the Navier-Stokes equations and the
soliton formalism has been shown by several authors for fluids and plasmas.

8-10

The equivalence in fluid was based upon the Madelung

transformation

f’ENI _ (W\)'a" (3)
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The derivation was formal, involving certain restrictive conditions
(irrotational .-flow and special barotropic property), and did not distinguish
between scales. On the other hand, the equivalence in plasmas ! did
distinguish scales, but took the properties of space charge and ponderomotive
force as axioms, without going into their mathematical foundation ”'12.
The Schrodinger equation thus derived suffers from its basis from weak
fluctuations.

In the following, we develop a nonlinear theory of solitons to
be valid for both fluid and plasma. The nonlinearities come from two
sources : The modulational nonlinearity is based upon the ponderomotive
force from the large-scale (or low frequency) density fluctuations, and
the nonlinear emission of sound is produced by the strong velocity fluctuations
of small-scales (or high frequencies). The density fluctuations of two
scales act differently cr: the field : The density fluctuation of small-
scale creates a spontaneous field-divergence, known as the space charge
in plasma, and the density fluctuation of large-scale responds to the
ponderomotive force, that is a known property in plasma and enters as
the Madelung hypothesis (3) in fluid. We develop two theories to explain

these two phenomena.



2. Hydrodynamics of multi-scale motions.

2.1. Scaling into slow and fast motions

A fluctuating quantity (A) can be decomposed into an ensemble
average (7)) by the operator A and a fluctuation by the operator
1 - A, where 1 is the unit operator. In multi-scale problems, we distinguish
between a slow fluctuation () and a fast fluctuation (&) by the scaling

operators

>
[+1]
=3
Q.
D a

(4a)

These operators add to

[
|
3
»?
+
I

’ (4b)

and correspondingly, a fluctuating quantity has the following components

(4c)

(5)



has an amplitude, or envelope, that varies slowly. It is denoted by

lad

()

a and is obtained by the scaling operator Ka' The representative
frequency is wn . An infinitesimal rate of damping 3 written for
convergence will be omittéd eventually. The complex conjugate part

is denoted by c.c.

A . . .
The velocity u in compressible fluid consists of a transverse

A

mode T ' and a longitudinal mode (e

wa A

2.2, Basic equations

We consider the equations of continuity and momentum as follows .

2+ VN ad=0 (6)
t ql d,
A A A A A b4 ~ "A
=-C +0nk (7)
Bi_'n,uz +1;nb7 . VLfn 3

”~
The longitudinal mode is represented by the collective field E»i. The

fluid velocity

- 2t (-7) A (8)

-~

i <>



may include both the transverse mode ot and the longitudinal mode

Gfby putting ¢ = 0, or may represent the transverse mode only by

putting ¢ = 1. The speed of sound is ¢ in isothermal fluid, so
2

A
that the pressure gradient is ¢ n . The density is normalized to

unity as

}f,,;‘_=/ (9)

We consider a homogeneous medium with .

(10)

1
P>
i
\0

Y
FALIDY
It
O

It will be conveniant to transform (6) and (7) into the wave form by

"
cross differentiation for eliminating the common term {7 2‘1‘, o

4

yielding the equation of propagation
’ (11)

where

(12)

7

1
Fq
RN

‘:‘,)
1B
NS

v
o



is the scattering (or emission) function.

Since the two forms of the wave equation (11), either with

g = lor with U =0, are equivalent, we have the

condition
A A A
-Vn E = /L/e, (13)
7 ¢
~
defining the collective field Ej’ The product
n E (14)
/
is called the modulation.
The scattering function
g A A A
n=VVinuwnr
2t A
= 1 + N (15)

has two modes : the transverse mode is

[
o~
]
<
'
—
X
RN
sy
S

(16a)
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and the longitudinal mode is

Ao vy (=4 }j (16b)

LIRNEN

as denoted by the superscripts

( )t and ( )2, (7)

respectively.
By the second derivative YV , the scattering function is

controlled by small scales, so that we can approximate the total scattering

by

(18)

DY
b
i<
1 <
1>
IF)

The longitudinal component has a fast fluctuation

{
(19)

F SR
URNH

vv.

-

TR
]

2-10



with the amplitude

~ { Y ~,fa<-
= . (20)
a = VV ’ Q l/:a.
and a slow fluctuation
A ’vl ~[
= VVvV: .
N - - N N (21)

[ [

The index ( )N denotes the slow fluctuation as distinct from ( )a'
We assume that the correlations between different modes are negligible.
Analogous definitions can be written for the transverse mode. Such an
approximation is usual in sound propagation in a turbulent medium.
The quantities

A

JE, T (22)

c>

Al
nl

v

with (A) refer to both the rapidly fluctuating motion and the slowly

fluctuating motion , as distinguished by the notations

E N W, ¢ (23a)

and

(23b)



with the characteristic frequencies

¢ and %] (24)

for the wave motions of high and low frequency scales, respectively.

These two-scaled motions may be called the two species, indicated by

a subscript ( )3 .
i

When the two scales (23a) and {(23b) are treated as the two

species, it might be convenient for a certain purpose to write the fields

E = 'é,; ¢ E (25a)

- L

£ = c [g 25b
N = N DN — ( )

/

in terms of a common field [E , to be distinguished by the parameters

C and §N in the ratio

n

2

fn /tN = (wﬂ//wf\/) ? l (26)

vvd
]
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The coefficient

e =z | (27)
=

A
has a + sign for a neutral fluid, and ey = 1, 'g = -1 for two

n
species of opposite charges. The parameters depend on the species

considered, e.g.on masses and charges in plasmas.

2~13



3. Hyperbolic and parabolic equations for the propagation of density

waves.
3.1. Notations
For the fast species, we define
A ~ & " _ x X _ -
n=|+m R, E=EFE with F =0, (28a)
and
A ~ z’\ ~
AAr =, An =N
(28b)
~ x A X
/T: = E AE = E
b - - - (28¢)

and scale the modulation as follows :

~ —~ ~ ”,’\‘:"\Y
(H—'}\,)f + A € (29a)

;"/‘\é = (l+ot)g+"fév+z":§
& Ko, A
= (I-fn)e '/‘/‘)’:Eér
- - (29b)



R
)
3 MR
I
o D¢

e
)
PAN
t
R
\

< E (29¢)
AnE = mE - (A+4)wE
x = Y o x = 29d
= mE _AAE , (29d)
in view of
A+ 2\’ = 1, for a slowly fluctuating function (30a}
A+ .3\' + K = 1, for a rapidly fluctuating function (30b)
and
A( ) =0, ina homogeneous medium. 130c)

Here 1 is the unit operator.

3.2. Hyperbolic equation for the propagation of high-frequency

density waves

By applying the scaling operator A, we transform (11) with

0 =1 into :
7 . .\ X X A At
(; V) n + YAAE = N (31)
t /
The modulation takes the approximate form

X A A~y ~ ~ X
O ol 1 P
mE Z2(1+N/E + /4 m & .



~r ~
from (29b), upon replacing n by N for coupling between the two

scales of density waves.
Upon substituting (32) into (31) we derive the wave equation

for the fast mode, as follows :

2 ~ ~ oy R =
Tre driving force is
x X oAt o X ® ’)tg
SE (S Rk
= A)?,t-yﬂ"}
= A(at+ A1), (34)

&

of different scales and

There we have neglected the compling n gj

have made use of the definition (13).

3.3. Parabolic equation for the envelope of density waves

The envelope of the fast wave has been defined by (5) and

is obtained by the operator Za' Upon applying this operator and neglecting

the second time derivative ?f ?;a of the slowly fluctuating envelope,

we transform the hyperbolic equation (33) into the parabolic equation

2-16



(R+8), a9

!
n a -
Z('Jn ZL"L
with
v, = C’/zcu (36)
n
and
~ 2 ~
= " - - (37)
eﬁ- - («)W’Y\'Q_ V C‘L

3.4. Hyperbolic equation for the propagation of low frequency

density waves

In ar: analogous manner and by applying A to (11), we obtain

the wave equation for the slow species of frequency scale GJN, as follows

(%z"CNZVZ/N=%+%—V'EN , (38)
with
~ A ~ 2
Q = - \Y/ N- - (39a)
M £/ N N 7



rv

S

i
32
)

N 7/ (39b)

by (13).

On the other hand, the species of fast scale (Jn may have

a density N that varies slowly according to the wave equation

2) ~ "’ﬁ "’f ~ xx ~
(Btz_czv)%:: N +j'L _A ?mEd -Yg

"',Q Mt ~ X X Py ~
= ¢+A—A‘JZ%§’%§V§, (40)
where we have written
M= A Y'n&; (41a)

and

< ‘§ (41b)

3 m R
L]
F_m
> b4

from (13), (25) and (26).

2-18



Upon dividing (40) by Z , we have

“l7 2 ._2)~ _ ~ ~ Ao Y
i@t“cv)"“‘@m’LQm" S Y Ey (42)
with

~ b | IV/Q

; = ¥ AN (43a)

~ _ -} "'t ~/ .\",’z

= - Y mE
Q= 3 (A7-4 / 4) (43b)

By combining the wave equations (38) and (42) for the two

~

N , respectively , we obtain

e

slowly varying densities N and n

(-8 = 10,8 ) 078

L

with
2
S =ct 457tk (45)
= C
7 T 3
-l 2 .
Here we have neglected the term E bt N, by € >o,

from (26). 2-19



The term (1 + gn ) V- EN is canceled in plasma by

e, = -1 , but it survives in fluids by 'én = +1, from (27).
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4. Theory of ponderomotive force for plasmas and fluids

The dynamical equation

A1
f{_‘é__= E , (46)
4t -

with

d _ )

dt

1]
o

+
(s>

‘Y’

describes the evolution of the longitudinal velocity under the collective

field. It can be integrated to get

t r A ,
Qj-'—“/&f‘t' E(t't/ (47)

0

in the Lagrangian description. The Lagrangian field

Eﬁ‘-—c'/ = %[t*r,'f(f-c’/] (48)

is defined as the field at the time t -T along the trajectory.

We can calculate the product

A 1% t " A
dhe [l [l Bty o
- - 0



The Fourier formula

coftz) .

?(’%-t‘) =/dw' € E/a)'/ (50)

“oe

gives the integrand

. . ’ ” t
Eﬁ‘.z:'/é‘-/f_z-y 2"//4&)'4“) . L(A) - )
[T+ w't’)

X <

X Ew)E(w).

(51)

In a homogeneous medium, we can take the average with respect to t
in the interval of time 2T. It is assumed that the scale of t is larger

than any characteristic time scales. We find

T 7 7
f / L(wfw}t 7 (73
bn [ 4t = x §(urw?
Tow 27 (52)
-T
The factor

)fs /T

is called the factor of Fourier truncation. After the time average, (51)

is reduced into

: 2-22



(”‘ / 7 - A . —L‘d'ﬁ""«'lj
tm —— [ 4t E/z‘—r/E(z‘—rﬂz/dw €

Too 2T -7
X x E[w/ El-w’)
<) (v2Tt?) _¢frv1”)

=§§ < 3 (53)

if the high-frequency field is peaked at cdn as its characteristic frequency,

by (24), (5), and by writing

X ) () = £E S(w-a, )

(54)
Upon substituting (53) into (49), we obtain

/\[ A " A 2

0 u'ﬁ = [F [’t [

- -~ -~ n (54a)

with
l'n\ =/dt’ [ 4" e <

(5u4b)

o 0

The infinitesimal damping £ guarantees the convergence. The upper
limit t of integration can be put equal to co without altering the value

of the integral.
2-23



The double integral is now evealuated by writing

dT

W

5 re)T
[z =
0

(55)

i

to find

A (56)

This yields the tensor

(57)

to calculate the scattering functions

(58)

i

)
<
g
(3811 BN
[ L BN

and “

(59)

2=24



by (18) and (43a), finding the ponderomotive potential

~ -1~ -2 A z

E-d A B
In (58b), we have written

cE = —EFE &

L i = = 7 (61a)
and

~ o~ | ~ 1Z

E-E =~ [ "a

lee {61b)

in d dimensions. The formula (60) for the ponderomotive force is derived

for its general validity to plasmas and fluids.
From (44), (43) and (59), it is seen that the density wave Rl’
-/
is produced by an emission Q, by the transverce component

of the velocity fluctuations, and & scurce EM by the longitudinal

component of the velocity fluctuations in the form of a ponderomotive

force.
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5. Spontaneous creation of the coliective field by the density waves

(a kinetic description)

As a starting basis, we use the master equation

0.+ L) G, xv) =0

(62)

for the distribution function
F‘[t/j/i) = %S[Y'E\L(tf)] , (63)

with the differential operator
Z=X‘Z +§[t,x)-}_ , 2=y (64)

The kinetic description (62) replaces the dynamical description (46).

By considering the operator S =1-A that gives the deviation

from the average, we transform (62) into

(at+xf)s}==~ S§E-OF

- (65)

By integrating, we obtain the distribution

T —_
sz-]dt At t-t) SEfe=)F

(66)
(0]
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and by taking the zeroth moment we find the density

g’ﬂ(tﬁ} E/d! gF(@x,v]

t —
= - [dv [ay Altw) JEEY 2F o)
| v £

The evolution operator A governs the Lagrangian description of the

field SE (t - T ) along the phase trajectory, such that

Nit-c) S Er=) = SE [t 8-

(68)

The position

Q(’é’—‘ﬁ): X ~—- vT - /E{'C) (69)

e

along the trajectory consists of a portion x- \_{'C from the streaming
by v in the Eulerian description, and another portion from the path j
as depending on the field in the Lagrangian description.

By the use of the Fourier expansion, the Lagrangian field (68)

gives

m

AltE=s) SE > = SE[t-t 5(e-t)]

L/cdt-/(’x
:Z/qu/é 2 "‘-)é._f(.c/ ff/w,é/ (70)

2-27



The orbit function

f)= A=) 4 (2)

has the following two components, by (69)

of streaming

- -k v)v

<

n

hi)

Dﬁv('c) = I—/ET /{V(‘C/

The dynamic component

(ke

AE/? (t)
(L LJ/3 - é)‘r

(13

-

(71)

. The kinematic component

(72a)

(72b)

(73)

is characteristic of the oscillation and the scale of the field for the species@

If the characteristic frequency C..Jﬁ dominates the dynamics of the oscillating

field, the approximation is valid. The hypothesis that the Fourier component

has a singular peak at Cdﬁ

without broadening is valid in our present

derivation of soliton equation for the laminar flow, which subsequently

may serve to describe the microdynamical state of turbulence.
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Upon substituting (72b) and (73) into (71), and subsequently

into (70}, we obtain .

) LTk x)
Aﬁ,f—'ﬁ/ F?-§=/7Awié < I Lé- 5Eﬂ(w,,f)

X _Q'(L%_E)‘C/A‘/('C)
9 .C_J‘“a‘é)"//dwa/é R e (k)

w -~

((,LJ ’“i)-D
< !Y

=T LS E (i ) (74)
/
The approximation of neglecting the streaming as compared to the dominant
frequency has been made The characterization by Cz)/g specifies the field,
/

the distribution, and the density, as

SE SF 3
i s ﬂ V nﬁ

From (67), (74), we calculate the distribution function

toe - o~
S];a i~ _J[ dt T (F+ F) V.o Eﬂ(ti)' (75)

0 - -

- -(L(—Jﬁ+£)'

£

and the density

(76)
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by taking the moment. The integral calculated as

e -(l:u)ﬁ-{-é)’c _z
/Zm/dr T | £ = (‘On ,
{70v% (77)
reduces (76} into
-2
dn =- W y-3E_ | (78)
o B L0

By a change of variables from the specified field gé—s into

the common field SE by (25), we find

v-SE =—VY ¢ Snﬁ (79)

for one single species, or

V-SE =‘7Z 27l sn (80)
- e PF

for many species. Here

Y____:___ﬂ_: “ o
2 S o

2-30

(81)



is a factor independent of the species, by (26).

le) A B : )
For two species =f densities N and n and characteristic frequencies

dn and ‘JN , (80) is

(82)
In particular, we have :
z A=l o
vE =—7 € M, for the fast field, (83a)
and
A/ ~
1\“‘ ~ Al }
v IE = -Y(g‘ n ot N
)’(é-,-r 2 -l) f’\7 for the slow field
= - i .
e € , e slow (83b)

The relations (83) describes the spontaneous creation of the
self-consistent field by the density fluctuations without going through
a process of evolution. These relations are valid for fluids with

A . o) A
<€ =1 and for plasmas with e, -1, e  =+1.
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6. The forced Zakharov equations

6.1. Envelope eqguation for the field

In (35) we have derived the envelope equation for the density

ﬁa' By the relationship (83a), rewritten as

~ 2 ~
VE = —w = ,
A a.

" (84)

by the use of (25a) and (81), the envelope equation for At:la can be trans-~

formed into an envelope equation for 'Ea’ with
A
= (85)
6. =0

from (37). The result of transformation is :

N o~

: . z ~ L g4 .
v (vt ANE =-34, 2,

Note that, in view of
<N €Q> =0

in a homogeneous medium, we may omit the operator A in (86).
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By integrating (86), we find

N N NV (% d
(Latwnv_;-wmA N)Eé2 = XQ : (87)

e

The forcing function is Xa , such that

-

~/
= g A, (88a)

v

X

a

or , upon integration,

~ n _ L __/___ , ~ ,
Zi,,("/’:) z“’«»Y P /olf nq_(t’i/ (88b)

{
x=]

In the absence of the driving force, i.e ;(,a =0, (87) is

degenerated into the first equation of the Zakharov equation

(i +yV-20 AN )E = 0 (89)

R

With the condition (2), the equation in the form (89) is also called the
Schrodinger equation, as written in (1), and the equation in the form

(87) will be called the forced Schrodinger equation.

6.2. The second equation cf the Zakharov system with the driving force

The density N is governed by the wave equation (44). By
the use of the Poisson equation (83b), rewritten as

2-33



(90)

by (25) and {81), we transform (44) into

(btz_ %sz)f\v/ = z(ém-‘- é/z,)

IR

L\’

<1
~
GYs?

=X v A [é;] (31)

by writing, from (60) .

n~ A 2 ~ ~ <
e A ,f—a (92)
with
ya I =1
A= (di & (")%) (93)
The approximation in (91) is made on the basis of the urequalities
~ ~n
Q « i
N
and
CJN <KW,

-]
that are small by the factor f & 1.
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7. Conclusions

The hydrodynamics of solitons is governed by the system of
equations (87) and (91) for the variables éva and N , respectively.
The system contains the modulational nonlintearity by the ponderomotive
force at the large scale and the nonlinear emission of sound by the strong
velocity fluctuations at the small scale. The derivation is based upon
finite fluctuations.

By the hypothesis of local nonlinearity that approximates (91)

by (2), we reduce the system into the forced Schrodinger equation

(th+\o)»vz+ _é_@n)\gl?a])i=§( (9u)

The two nonlinearities can be clearly shown in the kinetic represe n-

tation by the master equation
A N
(Bfﬁ—L.)zlﬁﬁ,x,E): o (35)
where the distribution function
fﬁ,x,E] = X[E—ﬁ(t,x}] (96)

has E as an independent random variable, and the differential operator

had

E;—_——L?”VZ-#'ZL‘OAN—L/B (97)

g a

f ~.
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contains two nonlinearities from the modulation by N and the sound
emission by )'Za, , as two convections in the phase space.

If w; confine ourselves to weak velocity fluctuations, we will
miss the emission of sound by ;Ea , degenerating the system of equations

o

(87) and (91) into the Zakharov equations and the equation (94) into

the standard Schrodinger equation

(3 +0v'ap ) AE])E = o

N

Our system of equations (87) and (91) and our forced Schrodinger

equation (94) are valid for both plasma and fluid turbulerce, sir.ce the derivation

uses a general argument.
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